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Abstract—The vast majority of existing work on brain bio-
metrics has been conducted on the ongoing electroencephalogram
(EEG). Here, we argue that the averaged Event-Related Potential
(ERP) may provide the potential for more accurate biometric
identification, as its elicitation allows for some control over the
cognitive state of the user to be obtained through design of the
challenge protocol. We describe the CEREBRE (Cognitive Event
RElated Biometric REcognition) Protocol, an ERP biometric
protocol designed to elicit individually unique responses from
multiple functional brain systems (e.g., the primary visual, facial
recognition, and gustatory/appetitive systems). Results indicate
that there are multiple configurations of data collected with the
CEREBRE Protocol that all allow 100% identification accuracy
in a pool of 50 users. We take this result as evidence that ERP
biometrics are a feasible method of user identification and worthy
of further research.

Index Terms—Biometrics, Emergent Biometrics, Biometric
Protocols, Performance and Evaluation.

I. INTRODUCTION

BRAIN biometrics potentially have many advantages over
current conventional biometrics, such as fingerprints and

retinal scans. For example, fingerprints can be surreptitiously
duplicated via high resolution photography, as was demon-
strated in a recent high-profile incident where German Defense
Minister Ursula von der Leyen’s fingerprints were copied with-
out her knowledge by a member of the Chaos Computer Club,
who took a high resolution photograph of her hands at a press
conference [1]. Brain activity, in contrast, cannot be measured
without a person’s knowledge with current technology, which
requires too much proximity and is too bulky to be used
covertly. As another example, in order to provide a brain
biometric, a user must be alive– indeed, the lack of active
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brain activity, as measured by the electroencephalogram (EEG)
is one clinical indicator that a person is brain dead [2]. This
characteristic suggests that brain biometrics might not only
protect the system, but also the users of that system. As a
third example, many features of the EEG (and the stimulus-
locked and averaged Event-Related Potential, ERP, which will
be utilized here) are non-volitional, meaning that they are not
under the control or conscious apprehension of the user, which
further means that a user cannot (willingly or unwillingly)
divulge their contents [3].

Despite these advantages, brain biometrics are not currently
widespread in practical applications— indeed, they are re-
ferred to as “esoteric” in textbook usage [4]. One reason for
this is that 100% identification accuracy has been difficult
to attain with brain biometrics. One report has reached this
benchmark [5], but is is much more common to see slightly
less accurate results (c.f. 97% identification accuracy in [6];
98% in [7], 96.6% in [8], 96% in [9])1. In prior work, we
argued that one reason for this is that most past attempts at
brain biometric identification have utilized the EEG as the
biometric measure (For example [10], [9], [11], [12]; but see
also [13]), instead of the ERP (but see [14], for an important
exception). The EEG in humans is an ongoing, continuous
signal that can be collected in the absence of any particular
stimulation. While this makes it convenient to collect, the fact
that it is collected in the absence of stimulation means that the
mental states of the user are under no experimental control
during its collection. Thus, two users ostensibly undergoing
the same biometric enrollment and challenge protocol might
actually be in very different cognitive states, both from each
other and across acquisition sessions, making the classifier’s
task much more difficult. Additionally, because the EEG is
often analyzed in the frequency domain for biometric use, it’s
temporal resolution is extremely poor. And, because the EEG
is not collected time-locked to any type of stimulation, it does
not and cannot reflect the same narrow, specific, cognitive
processes that can be captured by the stimulus-time-locked
ERP signal. The EEG is thus more reflective of the basal
state of the user (e.g., their level of stress or arousal; see,
for example, [15]) than of any specific cognitive process, as

1Of course, there are other concerns besides reaching the 100% accuracy
benchmark that contribute to a lack of applied use for brain biometrics.
These include the expense of appropriate bioamplifiers and sensors, and the
expertise required to acquire satisfactory data. However, there is little point
in addressing these more applied issues if it has not been demonstrated that,
with the best equipment and with expert users, it is in fact possible to acquire
a unique brain biometric. This demonstration is what we seek to provide here.
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cognitive processes unfold in the brain in a time frame on the
order of only a few milliseconds (e.g., [16]).

The ERP, in contrast, is a stimulus-averaged signal time-
locked to the presentation of some event of interest. When
ERPs are created through averaging over many trials of a
particular type of event, brain activity not related to the
event of interest is reduced and brain activity related only to
the event of interest is emphasized (especially that reflecting
excitatory post-synaptic potentials in the pyramidal cells of
the cortex; find review of the source and nature of the ERP
in [17]). This allows the experimenter to tightly control the
cognitive state of the user being reflected in the resultant ERP
activity. This is not possible with the raw EEG signal, because
the EEG is not collected time-locked to stimulation, that is, it
is not possible to isolate, for example, face processing or visual
processing within the EEG signal. This is especially true when
EEG is analyzed in the frequency domain, which requires a
a time series of data orders of magnitude longer than the
millisecond time frame over which cognitive processes unfold.
This is a disadvantage, because when the cognitive state of the
user is known, it can be directed, through stimulation, to states
that are likely to differ in unique ways across individuals. Here,
we will report the results of an ERP biometric protocol that
does this, by using categories of stimulation that are likely to
cause unique patterns of functional brain activity across users.
This work represents an important advance in brain biometric
protocols, in that it has been designed with control over the
cognitive state of the user explicitly in mind (c.f. [11], [18],
[19], [20]).

We hypothesized that, by controlling the cognitive state
of users through specific modes of stimulation likely to
produce differential responses across participants, especially
when multiple modes are combined, we would be able to
achieve higher biometric identification accuracy than has been
achieved in the past by protocols that do not control the
cognitive state of the user or that do not combine multiple
modes of stimulation. We designed the CEREBRE protocol
to test this hypothesis. What we hope this protocol will add to
the literature is an example of the utility of providing precise,
multi-modal stimulation to participants, to precisely control
their cognitive states and draw from multiple functional brain
networks, during biometric data collection. This work extends
previous work with ERP biometrics ([14], [13]) by including
multiple modes of stimulation, which we predict will result in
more identifiable responses when combined.

II. THE CEREBRE PROTOCOL

Here, we will attempt biometric classification based on ERP
responses to 5 categories of stimulation likely to each elicit
distinct patterns of activation across individuals, and we will
compare biometric identification accuracy from this data to
biometric identification accuracy obtained from (1) a more
standard eyes-closed EEG acquisition protocol and (2) a pass-
thought protocol [21] [22]. The categories of stimulation used
for the formation of ERPs were as follows; examples of all
categories of stimulation are available in Figure 1. (1) Sine
gratings. Sine gratings were selected because they are known

to strongly stimulate the primary visual cortex (e.g., [23]),
which, in turn is known to vary in its topographical pattern
of folds from person to person (e.g., [24]). Sine gratings elicit
robust visual potentials over the back of the head (e.g., [25];
review in [26]). (2) Low frequency words. Low frequency
words were selected because it is well established in the
psychophysiology literature that the ERP response to words
that an individual knows the meaning of differ from the
response to words that that individual does not know the
meaning of, and that, further, individuals exhibit substantial
variation in their knowledge of low frequency words (e.g.,
[27]). The word frequency effect more generally on the ERP
is well-characterized as a greater negativity for low than high
frequency words beginning around 250 ms post-stimulus onset
over the back of the head [16], [28]. In fact, variability in indi-
viduals’ response to wordforms was the basis of our previous
work with brain biometrics, which achieved 97% identification
accuracy [6]. (3) Images of foods. Images of foods were
selected based on the intuition that food preference is highly
individual. This intuition is accompanied by at least one result
demonstrating that structures in the ventral midbrain exhibit
activation profiles in response to images of food that vary
proportionally to individuals preferences for those foods [29].
The ERP response to food stimuli is well characterized (e.g.,
[30], [31]) (4) Celebrity Faces. Celebrity faces were selected
based on the observation that celebrities can be polarizing,
with celebrities that some individuals love being hated by other
individuals and vice versa. The possibility of a neural substrate
for this type of preference is at least partially supported by
results suggesting that structures in the orbitofrontal cortex
exhibit activation profiles in response to images of faces that
vary proportionally to an individual’s judgment of those faces’
attractiveness [32]. Face stimuli robustly elicit an occipital
negativity peaking around 170 ms in the ERP (see [33], for
review). (5) Oddball stimuli. When participants are asked to
respond to a rare (oddball) target stimulus embedded in a
sequence of more common stimuli (e.g., an X in a sequence
of Os), a large, distinct response potential known as the
P300 is elicited (review in [34]). The morphology of the
P300 is known to exhibit individual variation, with some
results suggesting that P300 latency is correlated with general
intelligence (e.g., [35]). Indeed, the P300 has been used as
a basis for the relatively limited work that has been done
with ERP biometrics in the past [13]. Here, oddball stimuli
consisted of images from the other four categories (that is, sine
gratings, low frequency words, foods, and faces), presented
in color, instead of black and white. Twenty-five percent
of images in the protocol were randomly selected for each
participant to be presented in color (more details in Methods,
below). Participants were asked to respond with a button press
whenever they detected a color stimulus. Overall, and as we
have just reviewed, each of the types of stimulation included in
the CEREBRE protocol not only strongly and unequivocally
impact the ERP, but also are likely to elicit individually
variable patterns of brain activity. For example, it is unlikely
that any two individuals will have exactly the same food
preferences. Further, it is even less likely that two individuals
will have identical responses across multiple categories. For
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Fig. 1. Examples of each type of stimulus used in the CEREBRE protocol: sine gratings, low frequency words, color versions of black and white images,
black and white foods, black and white celebrity faces, and color foods. For the foods and celebrity faces, 10 tokens of each type (e.g., 10 different types of
salmon, 10 different Anne Hathaways) were obtained from Google Images.

example, it is less likely that two individuals will have exactly
the same food preferences AND exactly the same vocabularies
than that they will have exactly the same food preferences,
and it is even less likely that two individuals will have exactly
the same food preferences, exactly the same vocabularies, and
exactly the same pattern of cortical folding in the primary
visual cortex, and so on. We therefore predict that, while ERPs
elicited in response to single categories of stimulation (e.g.,
foods) will be somewhat identifiable, combinations of ERPs
elicited in response to multiple categories of stimulation will
be even more identifiable. This prediction is supported by the
likelihood that each category of stimulation will draw upon
differing (though overlapping) brain systems. For example, if
the sine gratings call primarily upon the primary visual cortex,
and the foods call primarily on the ventral midbrain, then con-
sidering both responses together for biometric identification
provides multiple, independent, pieces of information about
the user’s functional brain organization– each of which can
contribute unique variability to the overall biometric solution.

III. METHODS

A. Participants

A total of 56 individuals, ranging in age from 18 to 43
years old, participated (37 female, mean age 20.2, 16 subjects

were 18, 15 subjects were 19, 14 subjects were 20, 6 subjects
were 21, 1 subject was 22, 1 subject was 23, 3 subjects were
28 and 1 subject was 43). 6 participants were excluded due
to failure to follow instructions or equipment failure. The
final database of 50 participants is substantially larger than
the reported mean of 29 across 10 brain biometric studies
reviewed in [36]. No particular screening was performed on
these participants, as the goal of a biometric is to be as broadly
applicable (universal) as possible. Indeed, the age range of our
participants is wider than what might be typical in even a very
large a cognitive ERP study (e.g., [37]), however, of course,
if brain biometrics are to ever enter applied use, they must
be accurate across a wide age range, and the only way to
demonstrate that this is the case is by testing brain biometric
protocols across a wide age range, as we have done here.
Participants were compensated with either course credit or
money. The Internal Review Board of Binghamton University
approved the experimental protocol.

B. Materials

During ERP data collection, participants were exposed to
400 images: 100 sine gratings, 100 low frequency words, 100
images of foods, and 100 celebrity faces. 300 of the 400 were
presented in black and white, and a different random 100
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for each participant were selected, without replacement, and
presented in color— these 100 color images were therefore
the oddball stimuli, since they were rare, unpredictable, and
required a response (i.e., we asked participants to respond
with a button press when they detected a color stimulus).
Examples of all stimulus types are available in Figure 1.
All stimuli were cropped to a uniform 500 x 500 pixels.
Composition of each category of stimulus was as follows.
The 100 sine gratings were randomly generated for each
participant, using the following parameters: orientation of the
grating was allowed to vary across the full 360 degrees;
number of pixels per period of the visible sine wave was
randomly selected between 1 and 80; sine gratings created in
this manner were then multiplied by a Gaussian kernel where
one standard deviation of the Gaussian covered a random
number of periods of the sine wave. Resultant sine gratings
were centered on a 500 x 500 pixel uniform grey background.
To create color versions of the sine gratings to serve as color
targets, a color mask with a random, but high saturated, color
was overlain. Low frequency words were drawn from the GRE
(Graduate Record Exam) with the constraint that they have
less than 10 letters. Words were then printed in black Arial
font centered on a uniform 500 x 500 grey background. To
create color versions of the word stimuli to serve as color
targets, the color of the font was selected randomly in the
high saturated half of the spectrum. To select foods, we first
completed a norming study where 44 participants (who did
not take part in the ERP study) were asked to list 10 foods
that they LOVE and 10 foods that they HATE. From the pool
of responses, the 10 most bipolar foods were selected, that is,
the 10 foods that were listed the most times in both LOVE
and HATE were selected. Then, 10 instances of each of these
10 foods (for a total of 100 images) were sought from Google
Images; 100 desaturated (black and white) copies were also
created. To select celebrity faces, we again asked the same
pool of 44 participants that performed the food norming to
also list 10 celebrities that they LOVE and 10 celebrities that
they HATE. Once again, the 10 most bipolar celebrities were
selected, and 10 instances (for a total of 100) were sought from
Google Images. Once again, 100 desaturated copies were also
created. During portions of data collection where participants
were asked to think of a pass-thought (details below), a black
key icon was presented on the same 500 x 500 pixel grey
background.

C. Procedure

Prior to data collection, participants were asked to select a
“pass-thought”. Participants were given 5 pre-selected options
(e.g., “Your favorite birthday”, “Your grandma’s face”) and
were also given the option to select their own pass-thought, in
which case they were asked to write down that self-selected
pass-thought. Participants were asked to choose a pass-thought
that they could remember strongly. After selecting their pass-
thought, participants were shown the black key icon that was
meant to cue the pass-thought and were instructed to think
about their pass-thought every time that key was presented
during the experiment.

During data collection, participants were seated in an elec-
trically shielded, sound-attenuated booth and positioned 75 cm
away from a 24 inch LCD computer monitor with a resolution
of 1920 x 1080, a black-to-white response rate of 1 ms and
a refresh rate of 60 Hz. Before the experiment, participants
were allowed to watch their EEG to see what it looks like,
and were given a brief biofeedback demonstration, where they
watched the EEG record change when they blinked and moved
their eyes, and tensed the muscles in their face and shoulders.
Participants were then told: “you can see how eye movements
and muscle tension can impact your brain waves, for this
reason, we ask that you remain as still as possible and refrain
from blinking and moving your eyes except during particular
parts of the experiment.” This type of demonstration is known
to improve signal quality (see [38]), by substantially reducing
ocular and EMG artifacts. Participants were then given a short
demonstration of trial structure, including explanation of when
it was and was not acceptable to blink or move the eyes, and
informed that their task was to watch the stream of images for
color images and to press a button on a response pad as fast
as possible with a finger on their right hand when they saw
a color image. Participants were told that they did not have
to make any response to non-color images, with the exception
that, when the black key icon appeared, they were to think of
their pass-thought. Following this demonstration/explanation,
the 400 images were presented in a random order to each
participant. The 400 images were broken into 4 blocks of
100 images each, and participants were given breaks between
blocks. The pass-thought icon was presented for 3 seconds
at the beginning and end of each block. After the initial
presentation of the 400 images, participants were then shown
90 randomly selected color foods– this was done because
pilot work indicated that foods presented in black and white
were not nearly as appetizing as foods presented in color.
During this block, the target stimulus was a color image of
a hamburger; participants were asked to respond every time
they saw that particular hamburger, which was presented 10
times. The pass-thought icon was also presented for 3 seconds
at the beginning and end of the color foods sequence, meaning
that the pass-thought was cued for 3 seconds 10 times across
the experiment, for a total of 30 seconds. Finally, participants
were asked to close their eyes and relax but not fall asleep
for 5 minutes, in order to acquire resting-state EEG. The
total duration of the experiment was approximately 1.5 hours,
including 0.5 hour for electrode placement and variable time
in the breaks between blocks. Each block lasted approximately
5 minutes and there were 6 blocks in total.

Trial structure is presented in Figure 2. The experiment
was not self-paced (that is, each trial ended and the next
one began automatically, regardless of whether a participant
made a response or not), though the automatic pace was
selected to be comfortable and not particularly challenging
for participants.

D. EEG Recording

The EEG was recorded from 26 active Ag/AgCl ring
electrodes placed in an elastic EasyCap with a geodesic
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Fig. 2. Example of the trial structure used in the CEREBRE protocol. Each stimulus is preceded and followed by a black fixation cross. Participants are
asked to keep their eyes as stationary on this cross as possible, to reduce ocular artifacts. The presentation duration of the fixation cross at the start of each
trial is jittered around a mean of 500 ms to reduce the buildup of anticipatory potentials. At the end of each trial, the fixation cross turns white– participants
are informed that they should do their best to blink and move their eyes only when the white fixation cross is on the screen.

arrangement. The electrooculogram (EOG) was recorded using
two electrodes placed on the outer canthi of the left and right
eyes to monitor for horizontal eye movements; a third EOG
electrode was placed on the sub-orbital ridge of the left eye
to monitor for vertical eye movements and blinks. Online, the
EEG and EOG were referenced to the left mastoid, offline, they
were re-referenced to the average of the left and right mastoid.
Thus the total number of sensors was 30: 26 on the scalp, 3
on the face, and the right mastoid. Inter-electrode impedances
were kept below 50 KΩ [39]. EEG and EOG were recorded
with a Brain Vision Brain Amp DC with a low pass filter at
250 Hz and a high pass filter with a 10 s time constant, and
sampled at a rate of 500 Hz with an A/D resolution of 16 bits.
No artifact rejection was applied, though baseline correction
to a mean of 0 was applied to each individual trial. ERPs
were formed for each type of stimulus (e.g., words, celebrity
faces) at each electrode time-locked to stimulus onset. Each
ERP included 550 samples, 50 pre-stimulus and 500 post
stimulus, resulting in an 1100 ms ERP; Averaged ERPs were
once again baselined to the mean of the 100 ms pre-stimulus
interval. ERPs were filtered with a band-pass of 1-55 Hz for
classification. This differs from what might often be observed
in the ERP literature, where ERPs of the type acquired here
are often filtered below 20 Hz for measurement (e.g., [27],
[37], [16]). We chose not to heavily filter this data in order to
leave the cognitive gamma band intact [40]. However, given
that filtering to a lower frequency is also common in the ERP

literature (e.g., in order to reduce the impact of muscle activity
in the ERP record [41]), we also investigated several classifiers
where data were filtered between 1 and 20 Hz (though see also
[42] on the dangers of over-filtering). In what follows, results
are reported from data filtered to 55 Hz unless otherwise noted.

E. Classification

A simple discriminant function based on normalized cross-
correlation was used for classification. This classifier was se-
lected on the basis of our previous work with ERP biometrics,
where we investigated the efficacy of several classifiers, in-
cluding SVM and several neural network approaches [6]. That
work demonstrated that the cross-correlator was more accurate
than any other single classifier, including SVM. Additionally,
the cross-correlator is computationally more lightweight than
classifiers that require training. For these reasons, the cross-
correlator is the only classifier that will be used here.

For classification, each participant’s responses to each type
of stimulus were split into two randomly composed halves:
a reference half and a challenge half. For example, of a
participant’s 90 responses to colored foods, 45 randomly
selected responses were averaged into a reference ERP and the
remaining 45 were averaged into a challenge ERP. Thus, there
was a reference ERP and challenge ERP from each participant
for each type of stimulus. Figure 3 displays reference and
challenge ERPs for two representative participants from the
black and white foods – note that, even visually, it is evident
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Subject A: Reference ERP Subject B: Reference ERP 
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Black and white foods - Middle occipital electrode

Fig. 3. Reference and challenge ERPs from two representative participants in response to black and white foods over the middle occipital (Oz) channel.
Notice that, even by eye, it is possible to determine which challenge ERP corresponds to which reference ERP.

which of the challenge ERPs corresponds to which of the
reference ERPs. Initially, only data from a middle occipital
channel (MiOc, that used in our ) were included; later, in the
voting classifiers (described below), data from more electrodes
were included. The middle occipital channel was selected
on the basis of previous work that indicated that especially
high identification accuracy is possible from data collected
over this site ([6]). This is perhaps unsurprising, as it is well
established that occipital electrodes capture activity in the
human primary visual cortex (e.g., [33]) and the method of
stimulation employed here and in the related, prior, work was
visual.

The classifier’s goal was, given a challenge ERP elicited by
a particular type of stimulus, to identify, via cross-correlation,
which reference ERP was most similar, thus providing an
identification of that challenge ERP. For each stimulus type,
each participant’s challenge ERP was cross-correlated with
their own reference ERP (self-self) and with the reference ERP
of the 49 other participants also in the system (self-other).
The maximum rectified, normalized, value returned by the
cross-correlation was taken as a single-value similarity index
ranging in [0,1]. The classifier’s guess as to which reference
the challenge ERP corresponds to is the reference with the

highest similarity index with the challenge ERP. This method
will be successful if a participant’s self-self cross-correlation
is larger than any self-other cross-correlation. Note that this
procedure is an identification classifier, in that the classifier
must compare the challenge with all references. This provides
a 1/50 = 2% chance that the classifier will correctly identify
a challenge. This is in contrast to a verification classifier,
where the classifier only has to compare the challenge with
a single reference, which provides a 1/2 = 50% chance that
the classifier will correctly verify the challenger’s identity.
Identification, as implemented here, is thus a more difficult
classification problem than verification.

Each ERP consisted of 550 samples (1100 ms of data
sampled at 500 Hz); the full ERP time series was submitted
for classification without feature extraction. This differs from
previous brain biometric approaches, which heavily rely on
feature extraction (review in [36]). We chose not to per-
form any feature extraction here for several reasons. First,
even without feature extraction, the cross-correlator is very
lightweight, as it does not require training. Second, our prior
work is highly suggestive that even this simple classifier, fed
the full ERP time series, can perform very well [6]. Third, ERP
biometrics are still relatively understudied, meaning that it is
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not entirely clear what the appropriate features for extraction
might be. That is, there are numerous potential features of
the ERP that might be individuating, for example, difference
amplitude of the P3 [14], peak-to-peak amplitude or peak
latency of the visual evoked potentials [43], and the time
derivative of the raw ERP [14].

The single-channel, single-stimulus type classifiers are com-
putationally very lightweight, and also only require data from
1 active electrode sensor. However, these classifiers do not
maximally take advantage of the unique variance across elec-
trode channels and stimulus types [6]. For that reason, we
also constructed several voting classifiers, wherein multiple
channels and/or multiple stimulus types were allowed to“vote”
on the identification of the challenge ERP. More details on
these are provided in the Results, below.

IV. RESULTS

Figure 4 presents the mean identification accuracy for all
stimulus types and for the pass-thought and resting state EEG
in data filtered below 55 Hz. In data filtered below 20 Hz,
classification accuracies were slightly higher (Sine gratings:
60%, Words: 78%, Black and white celebrities: 82%, Oddball
color targets: 84%, Black and white food: 90% and Color
food: 84%). All stimulus types achieved a greater than chance
identification accuracy, although the resting state EEG did
not (0%)— however, many prior reports have achieved much
higher identification accuracy with EEG, so, for reference, Fig-
ure 4 also displays field-leading 98% accuracy from Palaniap-
pan and Mandic (2007) [7]. It is likely that one reason the EEG
classifier performed poorly here is that no feature extraction
was performed prior to classification. We made this choice
deliberately, wanting to perform a fair comparison where the
same analytic techniques were applied to both EEG and ERP.
The food (black and white and color), oddball target, celebrity,
word, and sine grating classifiers each included at least 30
trials in both challenge and reference ERPs. The hamburger
and pass-thought classifiers, in contrast, only included 5 trials
in challenge and reference ERPs. Thus, while it is not valid to
compare the hamburger or pass-thought classifiers to the others
(because they included less data), they can be compared to
each other. And, even when the pass-though is compared to a
classifier including an equally small number of trials, the pass-
thought is a relatively inaccurate means of classification. The
highest single-channel, single-stimulus type classifier accuracy
was 86% for the color foods over the middle occipital scalp.
Indeed, the majority of channels with the highest classification
accuracy were found over the back of the scalp (posterior
channels), with the middle occipital (MiOc) channel being
highly accurate in general; this is consistent with our prior
work [6]. Appendix A.1 provides the locations and names
of all electrode sites; Appendix A.2 displays classification
accuracy over the entire scalp for all 6 single-item classifiers.

After analyzing the single-channel, single-stimulus type
classifiers, we sought to determine whether classifier accuracy
could be improved by allowing multiple channels and/or
stimulus types to vote on identification. This analysis was
based on the fact that, by design, the different stimulus types

likely tap into different functional brain networks, each one
contributing unique variability to a user’s full set of ERP
responses. Figure 5 illustrates this concept, by displaying scalp
maps of classification accuracy for the black and white food,
celebrity, and oddball color targets classifiers. As would be
expected, maximum classification accuracy for the oddball
color targets is found a broad area originating on the back of
the head, which is in accordance to the distribution of the P300
component. The black and white food, in contrast, are best
classified over the most occipital part of the head. Celebrities
are best classified over a group of channels intermediate
between the oddball and food areas of best classification.
Thus, the regions of scalp that provide strong single-stimulus
type classification accuracy differ across stimulus types, which
suggests that combining information from multiple stimulus
types and / or channels might improve classifier accuracy.

We started our investigation of multi-stimulus, multi-
channel classifiers by including votes from all 30 channels
and all 6 stimulus types (for a total of 180 votes per
challenge ERP). This classifier achieved 100% identification
accuracy. However, even though this “maximal” classifier is
perfectly accurate, it is the least practical classifier from an
applied standpoint, as it requires the most data collection
(i.e., collection of responses to 6 stimulus types) and the
most preparation time (to prepare a full electrode montage
for data acquisition). Therefore, we next sought to determine
whether 100% identification accuracy could still be obtained
with fewer channels and/or stimulus types. There were many
combinations of channels and stimulus types that allowed
100% identification accuracy, indicating that, overall, this
protocol is robust. The “minimal” classifier that still allowed
100% identification accuracy included votes from 4 single-
item type classifiers (words, color foods, color targets, and
black and white celebrities) over 3 electrodes, located over the
left middle occipital (LMOc), right middle occipital (RMOc)
and middle occipital (MiOc) channels. As mentioned above,
MiOc is the same channel identified as highly accurate in our
prior work, [6]. In data filtered to 20 Hz, the minimal perfect
accuracy classifier was slightly larger, requiring votes from
4 single-item type classifiers (Black and white foods, Black
and white celebrities, Oddball color targets and Color food)
over 4 electrodes (left middle occipital (LMOc), right middle
occipital (RMOc), right lateral occipital (RLOc) and middle
occipital (MiOc) channel). Thus, while data filtered to 20
Hz enable slightly more accurate classification in single-item
type classifiers, the minimal perfect identification accuracy
classifier they enable is larger than that enabled by the 55
Hz low pass filtered data.

In addition to reducing the number of sensors and stimulus
categories included in the classifier, another way to reduce the
time needed for identification by this protocol would be to
reduce the number of trials included in the challenge. To this
end, for both the maximal (all channels, all categories) and
minimal (3 channels, 4 categories) classifiers that provided
100% identification accuracy, we examined the relationship
between number of trials included in the challenge and classi-
fier accuracy. Approximate random sampling was used, where
25 different randomly selected subsets of trials were analyzed
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Fig. 4. Identification accuracy for the state of the art in EEG biometrics [5], resting state EEG, pass-thought, single stimulus type single channel classifiers,
and the ”maximal” and ”minimal” voting classifiers that provided 100% identification accuracy. Chance identification accuracy is 2%; all classifiers exceeded
chance except for the resting state EEG classifier. For all the single sensor categories shown here, the results correspond to the sensor placed over the middle
occipital scalp.

for each number of trials included (i.e., 25 different random
selections of 2 out of 30 trials, 25 different random selections
of 3 out of 30 trials, etc.) in order to reduce variability in the
estimate of accuracy at each number of trials due to which
trials were selected. The minimum number of trials needed in
the challenge to produce 100% identification accuracy was 27
trials (=27 seconds) for the maximal classifier. The minimal
classifier did not reach 100% accuracy unless all available
trials were used.

The minimal classifier performs better than any single-
channel, single-category classifier, however, it is not clear
whether this is actually because it is advantageous to combine
information from multiple brain networks (as probed by the
different categories of stimulation), or simply because the

minimal classifier includes more data than any of the single
classifiers. In order to know whether it is truly advantageous
to combine data elicited in response to multiple stimulus
types, it is necessary to compare voting classifiers that all
have the same number of voters, but vary in how many
categories of stimulation are included. We therefore examined
the performance of two additional sets of voting classifiers: 1)
a set of classifiers that all include 6 votes— one including
a single vote from each of the 6 types of stimulation (6
voters), and another 6 that include a vote from each of
the best 6 electrodes within a single type of stimulation
(6 voters each). 2) A set of classifiers that all include 24
votes— one including votes from the best 4 electrodes from
each of the 6 types of stimulation (24 votes) and another 6



RUIZ-BLONDET et al.: CEREBRE 9

including one vote from 24 scalp sensors within each single
category of stimulation (24 votes). What these schemes allow
us to examine is whether combining categories or combining
channels improves classification more. We would expect that
combining categories would be more effective, based on our
hypothesis that combining the activity of multiple functional
brain networks is what gives this protocol its power. Table
1 displays the results of these voting schemes. As expected,
it is, on average, more effective to combine categories of
stimulation than to combine sensors, even when the number
of voters is kept constant.

Note that, because activity at nearby electrodes must be
correlated due to volume conduction, it is not necessarily
the case that activity across responses to different stimulus
categories be correlated. This means that combining electrodes
may result in less ERPs with less information content than
combining stimulus types. This would further mean that
in the voting scheme we just described the multi-electrode
voters may perform more poorly than the multi-stimulus-
category voters not because combining stimulus types is
more advantageous than not combining stimulus types, but
because combining stimulus types is only more advantageous
than combining electrodes. To address this possibility, we
constructed another set of voters, each including 3 votes. The
3 votes could either be 3 ERPs constructed of 10 trials from
the same stimulus type (e.g., 3 10 trial ERPs all constructed
from foods) or 3 ERPs of the same size constructed from
3 different stimulus types (e.g., a 10 trial color food ERP,
a 10 trial black and white food ERP and a 10 trial oddball
ERP). Results were inconclusive– breaking apart the data into
ERPs this small resulted in comparably poor identification
performance for all voting schemes (for combining 3 same
type ERPs: 26.5% accuracy, for combining 3 different type
ERPs: 27.2% accuracy). From this we conclude that in order
to better examine whether combining stimulus types is more
effective than simply collecting many times more single-
stimulus-type data, a larger dataset than that acquired here
would be needed. However, even if it is the case that 100%
identification accuracy can be obtained with single stimulus-
type classifiers, what our analysis of that type of classifier
shows here is that such a classifier would have to have many
more trials than we collected, which would make the protocol
substantially less useful for applied use.

V. DISCUSSION

We set out to examine the extent to which Event-Related
Potentials (ERPs) might allow for more accurate biometric
identification than other commonly used brain biometric mea-
sures, such as the EEG or “pass-thought” type approaches.
We noted that ERPs, when compared especially with EEG,
provide some measure of control over the cognitive state of
the user, and also can be elicited in response to different
forms of stimulation that are, each, likely to produce individual
variation. We hypothesized that these factors might allow for
highly accurate ERP biometric identification. We therefore
designed the CEREBRE protocol, wherein participants were
asked to view several categories of stimuli each likely to

produce variable responses across participants (sine gratings,
low frequency words, celebrities, oddball stimuli, and foods);
biometric identification accuracy for responses to these item
types was compared to that for resting state EEG and “pass-
thought” recordings. Results indicated that all single stimulus-
type, single-channel ERP classifiers were more accurate than
the pass-thought; the pass-thought classifier was also less
accurate than a ERP classifier matched on number of trials
included. Single-stimulus type classifiers based on foods and
oddball stimuli were the most accurate (86% for the color
food, 82% for the black and white food and 80% for the odd-
ball stimuli). This was especially true over the middle occipital
electrode, likely due, at least in part, to the visual nature of
the task. Further, when multiple channels and / or stimulus
types were allowed to vote in identifying a user, identification
accuracy reached 100% in several configurations. This exceeds
or matches any reported accuracy obtained for any EEG or
ERP based classifier– that is, there is no prior report of a 100%
accurate brain biometric, an important benchmark that must be
achieved for applied use. In general, the hypothesis that ERPs
might provide for especially accurate biometric identification
was supported. In particular, we observed that combining
responses to multiple types of stimulation provided more
accurate identification, on average, than combining an equal
amount of data from multiple sensors. This result supports
our contention that one reason ERP biometrics are especially
accurate is that they provide the ability to tap into functionally
distinct brain networks that each provide a distinct identifying
information about a person. The limited past work that has
explored ERP biometrics [14]; [13] has not used this approach,
of combining types of stimulation, which we suspect may have
been why our approach was more accurate.

Prior work has, of course, obtained much higher identifica-
tion accuracy on the basis of the EEG than the 0% obtained
here (e.g., 100% in [5], 98% in [44] and 96% in [9]). One
likely reason for this is that we did not perform any feature
extraction on the EEG prior to classification. We did this
because we wanted to make a fair comparison between EEG
and ERPs, where exactly the same data analysis was applied
to both. Clearly, it is possible to construct classifiers that
produce better performance with respect to the EEG data,
for example by considering frequency spectra instead of the
raw time domain signal, as was done here. We would not
want to conclude that the method we used for analysis of the
EEG data here was anywhere near optimal, rather only that
ERPs provide such a robustly identifiable signal that little to
no feature extraction is needed to obtain very high accuracy
identification, whereas much more feature extraction might be
needed to reach the same accuracy with EEG. Note, however,
that regardless of how much feature extraction and machine
learning is applied to the EEG, there is no published report that
attains the 100% identification accuracy benchmark attained
here.

It seems possible that the oddball stimuli allowed highly
accurate classification simply because of the magnitude and
robustness of the P300 response they elicited as targets in the
participants’ behavioral task, and, indeed, the P300 has been
the focus of the relatively limited past work conducted with
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Fig. 5. Grand averaged topographic map of identification accuracy for the black and white food, black and white celebrities, and oddball color targets
classifiers, with areas of the scalp providing more accurate classifications in warm colors and areas providing less accurate classifications in cool colors.
As expected, the oddball color targets classifier was most accurate over a broad region starting on the back of the head, which is in accordance with the
distribution of the P300 component. The black and white food classifier, in contrast, is most accurate over more occipital part of the head. The celebrity
classifier, meanwhile, is most accurate over an intermediate region of scalp. These distinct topographies suggest that these three classifiers draw on separable
functional brain networks.

TABLE I
FOUR TYPES OF VOTING SCHEME: (1A) A SCHEME THAT INCLUDES 6 VOTES: ONE FROM EACH TYPE OF STIMULATION AT A SINGLE ELECTRODE, (1B) A

SET OF SCHEMES THAT INCLUDE 6 VOTES: NAMELY A VOTE FROM EACH OF THE TOP SIX ELECTRODES IN EACH CATEGORY OF STIMULATION, (2A) A
SCHEME THAT INCLUDES 24 VOTES: VOTES FROM THE BEST 4 ELECTRODES FOR EACH CATEGORY, AND (2B) A SET OF SCHEMES THAT INCLUDES 24

VOTES: ONE VOTE FROM EACH OF THE 24 SCALP ELECTRODES WITHIN EACH CATEGORY OF STIMULATION. NOTE THAT, ON AVERAGE, COMBINING DATA
ACROSS STIMULUS TYPES, AS IS DONE IN THE A TYPE CLASSIFIERS IS MORE ACCURATE THAN COMBINING DATA CROSS CHANNELS, AS IS DONE IN THE

B TYPE CLASSIFIERS.

6 Votes Accuracy 24 Votes Accuracy

1a: 6 Categories/ MiOC 0.92 2a: 6 cat/ top 4 electrodes 1

1b.1: 6 electrodes/Celebrities 0.86 2b.1: 24 electrodes/Celebrities 0.86

1b.2: 6 electrodes/Black and White Food 0.9 2b.2: 24 electrodes/Black and White Food 0.76

1b.3: 6 electrodes/Words 0.8 2b.3: 24 electrodes/Words 0.9

1b. 4: 6 electrodes/Oddball Color Targets 0.88 2b.4: 24 electrodes/Color Targets 0.86

1b.5: 6 electrodes/Color Food 0.9 2b.5: 24 electrodes/Color Food 0.9

1b.6: 6 electrodes/Sine Gratings 0.54 2b.6: 24 electrodes/Sine Gratings 0.58

1b Mean 0.81 2b Mean 0.81

ERP biometrics. One ERP study, for example, made use of
the large P300 that is elicited by a self-face embedded in a
sequence of non-self faces [14] and achieved 86% verification
accuracy (see also [13]); It is less clear why the response to
foods was so accurately classifiable. One possibility is that
the selection of the foods used here was guided by a norming
study which allowed us to select foods that were especially
polarizing in personal preference, however, the same norming
was conducted to select the celebrity faces, which were not
as accurately classified. Regardless of the explanation for why
foods are so accurately classifiable, the discovery that they
elicit especially individuating ERP responses highlights the
promise of an approach to brain biometrics that considers
cognitive and affective elements in the design of challenge
protocols.

We are able to achieve 100% identification accuracy only in
voting classifiers. As we have discussed in prior work [6], this
increase in accuracy when multiple classifiers are combined

is a result of the fact that each individual classifier taps at
least some percentage of inter-subject variability not shared
with other classifiers. This is evident in Figure 5, where it
is clear that the brain networks being drawn on by the black
and white food classifier are different from those being drawn
on by the celebrity classifier or the oddball classifier. The
utility of combining multiple types of stimulation is likely part
of the explanation for why we were able to achieve 100%
identification accuracy here, when even 100% verification
accuracy has not been achieved by other ERP biometrics
(e.g., [14])— though it would be interesting to compare the
CEREBRE protocol to other, related ERP protocols head to
head in future work.

Many combinations of stimulus types and channels were
able to achieve 100% identification accuracy, which suggests
that overall, this protocol is fairly robust. Further, the finding
that there are multiple different ways to combine data from this
protocol to accurately identify users suggests that this protocol



RUIZ-BLONDET et al.: CEREBRE 11

has the added advantage of providing a cancellable biometric.
That is, for example, if an authorized user’s CEREBRE
biometric were stolen or disclosed somehow, the compromised
biometric could be cancelled, and a different combination of
stimuli/channels could be used for identifying that user after
the compromise. Note that other, more prominent, biometric
measures, such as fingerprints, retinal scans, and even EKG are
non-cancellable. The potential cancellability of the CEREBRE
protocol is also one feature that distinguishes it from other
ERP biometrics. For example, ERP biometrics that rely on
the response to a self-face embedded in a sequence of non-
self faces (e.g.,[14]) is potentially less cancellable, as it relies
on a single, very specific, form of stimulation.

Although the results reported here are extremely promising,
there is still clearly more work to be done in investigating
the characteristics of this protocol in specific and ERP bio-
metrics in general. First, the resting-state EEG collected here
performed extremely poorly, however, we note that the EEG
was analyzed in the time domain here to allow more direct
comparison with the ERPs, while previous reports of higher
accuracy EEG biometric classification have analyzed the EEG
in the frequency domain or the combined time/frequency
domain (e.g., [9], [44]).

Second, the pass-thought also performed very poorly, de-
spite a seemingly pervasive sense in the general public and
also, in some cases, the biometrics community that this should
be an effective biometric. However, even when compared with
the oddball hamburger classifier, which included a comparable
amount of data, the pass-thought performed poorly. Our sense
of why this is the case is that responses to the pass-thought
stimulus are likely to be non-uniform, even within a partici-
pant, as it is very difficult to focus one’s thoughts on a single
image or feeling for many seconds in exactly the same way
multiple times. And, indeed, our participants self-reported that
they had difficulty complying with our directives regarding the
pass-thought, as their first thought would normally be about
the key itself, and then, after a variable period of time, they
would think about their selected memory. Additionally, they
reported it was hard to recall the same aspect of the memory
each time the key appeared.

Third, all of the stimulation used here was visual; this
leaves open the question of whether adding stimulation in
other modalities (e.g., auditory, tactile) might also improve
the robustness of the ERP classifier— though other sensory
modalities in humans do not allow stimulation to be transduced
as rapidly as the visual modality, which has the result that
ERP time-locking in other modalities can be less crisp than in
the visual modality (see, for example, [45]). This may mean
that responses to other modalities of stimulation may be more
individuating when analyzed in the frequency domain.

Fourth, all data analyzed here were collected in a single ses-
sion, meaning that the question of the biometric permanence
of the CEREBRE protocol is still an open one. Addressing
this question will require asking participants to repeat the
protocol multiple times with temporal delay between sessions–
acquisition of this data is currently ongoing in the lab. Our
prior work with ERP biometrics suggests, however, that even
at a delay of up to 6 months, ERP biometric identification

accuracy does not significantly decrease ([46]). Regardless
of these questions for future work, the results reported here
suggest that further exploration of ERP biometrics is highly
warranted.
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